摘要:A-level生物学习是很多同学苦恼的问题,接下来小编为您介绍其中的遗传算法,希望能对同学们的学习有所帮助。遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。 遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,

 

  A-level生物学习是很多同学苦恼的问题,接下来小编为您介绍其中的遗传算法,希望能对同学们的学习有所帮助。遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。

  遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。

  遗传算法的基本运算过程如下:

  a)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。

  b)个体评价:计算群体P(t)中各个个体的适应度。

  c)选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。

  d)交叉运算:将交叉算子作用于群体。遗传算法中起核心作用的就是交叉算子。

  e)变异运算:将变异算子作用于群体。即是对群体中的个体串的某些基因座上的基因值作变动。

  群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t+1)。

  f)终止条件判断:若t=T,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。

  遗传算法也是计算机科学人工智能领域中用于解决最优化的一种搜索启发式算法,是进化算法的一种。

 

 

A-level课程优势:

· 课程体系:全程服务,20-32小时集训拔高,80小时自主学习与督导指点我们陪你每一分钟

· 课程资料:1CIEEdexcel官方教材;2)独家考前押题秘籍;32015-2017年考试真题模考精讲;

· 无忧备考:名师授课+作业批改与点评期中、期末模考精讲+24小时答疑+一直到考前也会进行的伴读计划

· 明星师资:授课老师均毕业于美国TOP30名校和国内985名校,IELTS考分8+,同时教授过至少3000个小时的课程

· 教学方法:超过同类机构两倍的刷题量、考前预测各个击破讲练并进,问答结合,真正掌握每一个知识点

 

针对2018年的A-level考试,开设A-level基础课程、强化课程、冲刺课程。想快速提分的同学可以在线咨询客服,了解课程详情,预约名师1V1试听课;为你量身打造专属A-level学习方案;免费领取A-level考试学习资料/视频课件/直播公开课!

 

相关字搜索:A-level生物